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Abstract-The theory of Kelvin~Helmholtz instability is employed to analyze the instability phenomena 
of non-reacting and reacting stratified gas flows injected sonically into a liquid. The effect of the mass 
transfer at the gas-liquid interface on the instability is investigated. It is shown that the mass transfer 
affects the pressure perturbation which acts to transfer energy from the gas phase to the liquid layer through 
its evaporating and condensing behavior, its wave-drag and lift components, against forces due to surface 
tension and liquid viscosity. The dimensionless wave frequency, amplification, and wavelength at the 
maximum instability are presented as a function of a dimensionless surface tension/viscous parameter and 
a blowing parameter due to the interfacial mass transfer. The interfacial evaporation is found to enhance 
the instability while the interfacial condensation is to reduce the instability. The results provide the 
theoretical explanation of the reported dynamic and instability behavior found in the reacting jet of a HCI 
gas submerged in the ammonia aqueous solution. Finally, an application to the prediction of the break- 
off plume length observed in submerged reacting jets is presented and the results are compared to exper- 

imental data of the HCl(g)- NH,(aq) system. 

1. INTRODUCTION 

SUBMERGED turbulent reacting jets are of interest in a 

number of applications. In stored chemical energy 

propulsion systems for underwater applications, a 
gaseous sulfur hexafluoride gas is injected at a choked 
speed into a liquid lithium bath in a reactor [l-5]. The 
reaction forms a complex submerged turbulent jet 
and releases relatively high heat of reaction as a heat 
source to power a Rankine cycle for underwater pro- 
pulsion. Similarly, submerged reacting jets are widely 
used in the basic oxygen steel making process [6] and 
in steam generator safety analyses (steam jets sub- 
merged in liquid sodium) of liquid metal-cooled reac- 

tors [7], etc. 
In these applications, the opaqueness of the liquid 

metals and their container makes flow visualization 
of the submerged reacting jets difficult. Recently, Cho 
et al. [8] have circumvented the experimental difficulty 
by selecting an optically transparent pair of reactants, 
namely, by injecting a HCI gas (oxidant) at a choked 
speed into an aqueous ammonia solution (fuel). In a 
series of experiments by varying the underexpansion 
ratio and the concentration of ammonia (fuel) in the 
solution, their experiments revealed an unexpected 
and unexplained phenomenon in submerged reacting 
jets, namely, instability occurred when ammonia was 
present in the solution. In fact the instability was so 
severe that plume break-off occurred periodically near 
the orifice exit and the bath pressure experienced large 
periodic fluctuations as well. This instability is of con- 

tern as in any propulsion system, but has not been 
investigated analytically. 

Several investigators have studied both exper- 
imentally and analytically the Kelvin-Helmholtz 
instability of the gas-liquid interface. Chang and 
Russel [9] analyzed the case where a subsonic and a 
supersonic gas jet flowed through a plane of liquid. 

Nachtsheim [IO] examined the three-dimensional 
disturbance of a shear flow in which a thin liquid film 
was exposed to a supersonic gas stream with wave 
fronts obliqued to the external stream. Nayfeh and 
Saric [ 1 I] analyzed a compressible gas stream flowing 
over a liquid under the influence of a body force 
directed outward from or toward the liquid. Craik 

[ 121 examined both experimentally and analytically 
the instability of thin liquid films exposed to an incom- 
pressible air stream. Chawla [13] analyzed the case 
where a subsonic or a sonic gas jet is flowing through 
a liquid, under the action of pressure perturbation, 
liquid viscosity, and surface tension. Chawla [14] also 
developed a simple model for the rate of entrainment 
of the liquid in accordance to the knowledge of 
Kelvin-Helmholtz instability of the interfacial wave. 
None of them has considered the instability of a gas- 
liquid interface with mass transfer and is applicable 
to the present submerged reacting jet, such as the 
reacting hydrochloride-aqueous ammonia system in 
which a periodic or cyclic plume behavior was found. 
The present analysis explores the theoretical back- 
ground in understanding the Kelvin-Helmholtz insta- 
bility of a liquid-vapor interface with mass transfer 
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NOMENCLATURE 

a radius of gas jet 
A nondimensional empirical constant 
B driving force 
c sonic velocity at any local point in 

the jet 

C,, dimensionless empirical constant 

CL an empirical constant 

CP dimensionless pressure coefficient 
D enthalpy empirical constant 
h enthalpy 
I 1,-i/, 

L0 break-off length of the gas stream 

m, mass fraction of i species 
M, molecular weight of i species 
ri2 evaporation or condensation flux 

PI viscosity parameter 

PZ fictitious diffusion parameter 
P pressure 
Y radial coordinate 
t time 
T temperature 

u/% velocity of the gas at the orifice 

5 blowing velocity at interface 
V, axial velocity of gas jet 

V, radial velocity of gas jet 
V,. liquid velocity at/normal to interface 

V, gas velocity at/normal to interface. 

Greek symbols 
z complex angular frequency 

4 time amplification factor [s ‘1 

4 angular frequency [s ‘1 

1’ specific heat ratio 

9 radial displacement of gas-liquid interface 
from mean radius of the jet 

V” amplitude of displacement at the orifice 
wave number, 2n/i 

x wavelength [m] 

11 dynamic viscosity of liquid 

P density 
surface tension 

i, velocity potential 
4 dimensionless perturbation potential 

* stream function 
w wave velocity vs orifice gas velocity. 

Superscripts 
0 stagnation quantity 
* dimensionless quantity. 

Subscripts 
f liquid 

g gdS 

m maximum instability 
0 orifice. 

(blowing velocity) across the interface. Solution of 
Kelvin-Helmholtz instability analysis is then used, as 
an application, to determine the break-off distance of 
submerged reacting jets and the results of the pre- 
diction are compared to the reported data of HCl(g)) 

NH,(aq) jets [S]. 

2. GOVERNING EQUATIONS FOR THE 

REACTING GAS JETS 

Figure 1 illustrates a submerging sonic gas jet in an 
infinite mass of liquid with a uniform axial velocity of 
O;, namely the sonic velocity at the nozzle throat. 
Similar to the prior works (e.g. [13]), the gas jet is 
assumed without loss of generality to have a mean 
radius equal to the orifice radius, a. Furthermore, the 
gas is treated as an ideal frictionless fluid and the short 
wave approximation, which reduces the problem of 
two-dimensional axisymmetric jet to that of two- 
dimensional planar jet, is employed. However, a mass 
suction or blowing at the jet’s gas-liquid interface is 
considered to simulate a reaction between the gas 
and the surrounding reactive fluid. The suction and 
blowing can also simulate respectively condensation 
and evaporation processes at the interface. In view of 
the above assumptions, if the flow field is assumed 
free from shock waves of finite strength and body 

forces, the gas flow can be considered an isentropic 
flow, and the flow field can be considered by the poten- 
tial flow theory. The hydrodynamic equations govern- 
ing the gas motion in an axisymmetric coordinate 
system are 

@ c-,$ 
detached bubble 

FIG. 1, Schematic diagram of reacting gas jet submerged in 
liquid-linearized treatment in the analysis. 
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and 

(3) 

Using the sound speed and the velocity potential 
equations 

dP 
- = c2 
dP 

(4) 

in equations (l)-(3) yields the nonlinear wave 

equation, 

To solve the above nonlinear equation, a local sonic 
velocity of the gas jet must be determined initially. 
Multiplying equations (6) and (7) by dx and dr, 
respectively, adding the resulting equation and 
expressing in terms of 4, yield 

For an isentropic flow along a streamline, 

TdS=O=dh-LdP. 
P 

Eliminating the pressure between the above two 
equations, integrating from a stagnation point (h, = 
C,,To+ U,2/2) to a downstream point (h = C,T) and 
using C,T = c’/(y - 1) yield the local sonic velocity 
of the gas jet, 

c”=(y-_l) ;p+2?-$! 
[ Y-1 

where co is the sonic velocity at the orifice and y is the 
ratio of specific heats. 

It is worth noting here that the governing equations 
(6)-(7) for the gas jet are general and applicable to all 
regimes of the two-dimensional axisymmetric com- 
pressible potential flow. Without considering the 
expansion or contraction motion of the gas boundary 
due to the vaporization or condensation between the 
jet gas and the surrounding reactive liquid, the fol- 

lowing kinematic boundary condition 

liquid interface, i, must be satisfied, 

dvl all atj dx 

=t+%G 

at the gas- 

(8) 

where rl is the displacement of the gas-liquid interface 
from the mean jet radius (see Fig. 1). For non-reacting 
evaporating or condensing fluids, a blowing velocity 
(see V, in Fig. 1) into the gas side relative to the 
interface velocity (- F, = V,,,-- Vi,,) is introduced 
such that equation (8) becomes 

where a positive value of L’, represents evaporation 
while a negative value means condensation. For react- 
ing flows, the equivalent blowing velocity is properly 

estimated as shown later. 

3. LINEARIZATION OF EQUATIONS OF 

MOTION FOR THE GAS PHASE 

The gas phase velocity potential, &, is expressed in 

terms of a dimensionless perturbation potential 4 as 

&(r,x, t) = U,x-aV,lnr+EgUsi~(y*,x*, t*) (10) 

where the term, aV,lnr, describes the contribution 
due to the presence of evaporation at the gas-liquid 
interface. For a planar flow, a V, In r is replaced by V,r. 

The dimensionless variables are defined as 

(a - r)6 
x* 2, y* Eh 

tu Iall 
t*=w* T =ym, ( > ‘I*(x* l*) = 554 ) 

6 
&a 

where 2 is the disturbance wavelength, and c1 is the 
complex angular frequency of the interfacial wave. As 
presented by Chawla [ 131, the dimensionless param- 
eters sg, 8, w*, and 6 are to be defined in a given 

neighborhood in such a way that 4, q*, and their 
derivatives with respect to any of the dimensionless 
independent variables are of the order of unity. By 
differentiating equation (10) with respect to x, r, and 
t, respectively, the axial and radial velocities are 

(11) 

s_ 6 
ar a-y* 

v,-E,ug~~.v.. (12) 

Similarly, the sound velocity given by equation (7) 
can be expressed as 
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where M, = C/,/c, and 4,. is the derivative of 4 with 
respect to x*, etc. 

Pressure distributions are quoted in terms of the 
nondimensional pressure coefficient C,. Since the flow 

through an expansion wave is, as suggested earlier, 
isentropic, the use of the isentropic pressure and tem- 
perature relations and the sound velocity of equation 
(13) yields 

Finally, upon the substitution of the velocity potential 
equation (10) and the sound velocity equations (13) 
into the wave equations (6) yields readily 

+E 
0 

u*(#) +(j 
I’ 

+s. 5, !I!() 
** S-y* Ii, ’ a ” )I 

The theory of small perturbation requires that the 
deviations of the velocity components and the pres- 
sure from the reference conditions be small. As a 

result, from equations (1 l)-(l4), we obtain the fol- 
lowing conditions : 

In the subsequent analysis, two practical cases 
are of physical relevance to the present problem of 
concerns. 

The first case under consideration is that wave vel- 
ocity ]a]I/2n is much less than the gas velocity U,, 

(17) 

Applying the conditions specified by equation (16) 
and the sonic flow condition, M, = 1, into equation 

(15) results in 

If a linearized solution to the nonlinear equations 
of motion for the gas phase is desired for short waves, 
i.e. for I./a << I, we expand 4, in a power series in i/a. 
From equation (lo), it implies ag = I./a. Similar to 
Chawla [13], by setting 1/62(a/lW)2c,b = 1 and using 
FQ, = A/a, the expression of 6 is found as S = (a/i) I!‘. 
Thus, when i/a cc 1, we obtain 6 >> 1 and equation 
(18) is simplified to 

4 ) ,I,, * = (y+ I)&*$, .,.I +2$&*. (19) 

However, if w* x E+ but w* <c 1 (case I), and by 
setting MO = 1 and 0*/G’ = (a/l)’ = 1, equation (15) 
can be simplified into 
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&. = 2&,*. (20) 

It is noted here that equations (19) (20) are given 
for two-dimensional planar flow since the condition 
6 >> 1 has been used in the simplification. 

As to the kinematic boundary1 condition for the gas 
jet given by equation (9) after substituting the radial 
velocity by equation (12) and expressing q in terms of 
q* = ~I/EU, it yields 

+E(o*@+r.:*(l +E,#,*)). (21) 

For two-dimensional planar tlow approximation, 
a z I, and applying the first condition of equation 
(16) (small perturbation theory), the condition given 
by equation (17). and the fact that &,(~/a*) = E for 
case 1 (131, the above is simplified to 

-& = VT*. (22) 

As to C,,, the term (a/r)( V,/U,)E,(&/U)& in equa- 
tion (14) cannot be neglected for it is greater than the 
second order small quantity. We have acknowledged 
that. for case I of the present discussion, o* << 1, 
V,/U, -K I, .Q cc I, and (&/a)’ z I/e,. As a result of 
these inequalities, we can conclude that E: c< 1 and 
E; << 1. Then the pressure-coefficient is simplified to 

Binomial series expansion and a neglect of terms of 
smalier order yields an even simpler expression, 

C’, = -2t,(&.+ 2 ($)&). (23) 

The above analysis has indicated that the transient 
component of gas motion dominates over other terms 
in equation (18): and, as a result, the governing equa- 
tion (20) becomes linear, and the boundary conditions 
and pressure coefficient have simplified to equations 
(22) and (23) respectively. 

Case 2 deals with the situation where the wave 
velocity is of the same order of magnitude as the gas 
velocity, 

Similarly, under the short wave approximation as well 
as using the small perturbation theory and the sonic 
flow condition, equation (15) is simplified to 

$J*V* = c0*+,*,* -I- 24,*,. (25) 

where, similar to Chawla [I 31, the choice of 

(~*/6~)(u/l)” = 1 was made. Also, the boundary 
condition given by equation (9) becomes 

- &* = o*rI$ + r],$ (26) 

and the pressure coefficient C, given by equation (14) 
becomes 

Since governing equations (25)-(27) of case 2 em- 
brace the governing equations (20). (22), and (23) of 
case I under the more general condition of w* = O(l), 
the same short wave approximation and the same 
theory of small perturbation, we therefore use only 
equations (25)-(27). After transforming equations 
(2.5-(26) into dimensional forms for a planar gas flow 
(a z Y), they yield 

a2g 
__..A _ _ -2 _ _!_. ?A!% - 0 

2 a’# 

i?r2 iJ, atdx il; at2 - 
(281 

(2% 

The downstream pressure in the gas jet can be 
obtained from equation (27) by noting that 

P” = P&@V. 

4. GOVERNING EQUATIONS FOR THE LIQUID 

PHASE 

The linearized equations of the motion of liquid 
consistent with the short-wave approximation are 

and 

av 
z=-par 1 !?+p!+!??) (33) 

where Uand Vare the axial and the radial components 
of the induced motion of liquid, respectively. P is 
the pressure at any point in the liquid state, v is the 
kinematic viscosity of the liquid, and p is the liquid’s 
density. 

The linearized kinematic boundary condition at the 
gas-liquid interface (on the liquid side) is 

(34) 

In addition, the following dynamic boundary con- 
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ditions must also be satisfied by the solution: (a) As a consequence, the solution of the gas flow of 
continuity of tangential stress at the interface equation (28), which satisfies the boundary condition 

^ 

P g;+$t: =o 
( j 

of equation (29) under the planar approximation, is 

(35) I , sin (K,r) 
&(r,x,t) = U,x- v,r+(C(+iKU,)-------q(.u,t) 

and (b) continuity of normal stress at the gas-liquid 
b K, cos (I&a) 

interface. (46) 
The momentum balance of a control volume con- 

taining an evaporating interface moving with a vel- where 

ocity V, as shown in Fig. I yields 

where the evaporation rate, 

(36) 
The solutions of the liquid motion equations (40) 

(41) which vanish at infinity and also satisfy the 
boundary conditions equations (34), (35) at the gas- 

&\.Ql = P&VP+ V,) = pr(Vr+ VI). (37) 
liquid interface, are 

Now, let us define a stream function $(r, x, t) that (48) 
will help us later in the analysis of wave propagation. 

The stream function is defined in such a way that the and 
continuity equation (3 1) is satisfied. 

To simplify equations (3l)-(33). a stream function 

i(r, x, t) (49) 

(38) where a is the orifice radius, v is the kinematic 
viscosity, and 

is introduced into equations (32) (33) to yield 

I= = K2+ ;, (50) 
VI/l = 0. (39) 

By substituting equation (48) and equations (43) (44) 

Since (V * - (1 /v) d/at) and V * commute, the function and then integrating, the pressure in the liquid phase 

II, can be separated into two parts : is obtained as 

(40) lc2+12 
P,= C-pa’------ e 

K(K2 - 12) ’ 

mk(,-il, 

(41) 
where C is an integration constant and is evaluated 

such that the general solution ofequation (39) is given 
by applying the condition equation (36) at .Y = 0 
where the disturbance originates and the deviation of 

$=$,+$I 

and equations (32), (33) are simplified to 

(42) 17 of the gas-liquid interface is zero. By noting that 
from equation (46), at the location where the dis- 
turbance originates, namely at x = 0, we have 

1 dP ri alj, 

-=+> p i?r Ar dx . 
(44) and 

P, = P, (orifice condition) = bpgUi 

l?V,*r 

i;r 

5. SOLUTIONS OF FLOW EQUATIONS 
The solution to the pressure in the liquid phase, equa- 

In the linearized stability analysis, the motion of the tions (43), (44), is found as 
gas-liquid interface can be described in the following 
manner : 

Y&C, t) = q,eiKx+“’ (45) 

where 9” is the initial amplitude, K is the wavenumber, 
and a is the vector sum of time amplification factor 

-pazcTx;, q(x t). (51) 
K(K’--1’) ’ 

(2,) and the angular frequency of the disturbance (IX,). Substituting equation (46) into equation (30) yields 
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Then equations (55)-(56) can be simplified and cast 
into the dimensionless forms in accordance to the 

following dimensionless variables: 

+&VI 
[ 

- V,+(a+iicU& 
cos (K,r) 
-a, t) . 
cos (K&z) 1 (52) K* = K63i2 

c( (pJ) “2 

pL’:2pg&/2; % 
*EL. 

* _ 4(PLo) I’* 

&lJ,5’2 ’ 

a, _~_ 

ppq12 

By using the asymptotic formulas at the interface 

(r = a), 

cos (J&a) z k elKc” ; sin (IQ) z &e’Q’. 

The gas-pressure equation (52) at the interface can be 
simplified as 

With the above solutions, the dispersion equation 
at the interfacial boundary r = a is found, by sub- 
stituting equations (45), (51), and (53) into equation 

(36) and using equations (38), (42) (48) and (49), as 

x2(K2+/*) 
K2-12 

+2\VgK2JK2p122 +iP”K(iKU +M)~ 

K2--I2 PK, ’ 

+ “p” v,K(iKu,+a) = f. (54) 

6. SOLUTIONS OF THE DISPERSION 

EQUATION 

For ease in obtaining the roots of equation (54), 
the equation is to be separated into the real and the 
imaginary parts. By substituting 1 and Kc from equa- 
tions (47) and (50), and splitting LY into the time ampli- 
fication factor (x,) and the angular frequency of wave 
disturbance (ai), CC = a,-&, the dispersion equation 
is separated into real and imaginary parts as 

-4K2VCi,+U’-C?,?-4V2K4+’ P”(lCUg)5’2 
2P 

(a,‘+a:)“*+cL, “2 x 

cC,2+cI: 
) +23’2K3V2{[ (K2+ ;>‘-’ 

They are 

((K*)2-(K*)2)+:p~(K ) 
* 512 

(58) 

x L ((~,*)2+(~F)2)“2+~,* 
(ai*>2+(a:)2 1 

“2 = p (K*)3 (5g) 

I 

and 

x ((a,*)2+(a:)2)‘!2-a,* “2 
(a,*> 2 + (a,*) * 1 

= -P,(K*)* (60) 

in which P, and P, parameters are defined as 

p 
I 

= pg f.q*o- 5i2p5i2 PgUgP2~-2vl -; p,~~----_.~ 
(61) 

P P 

It is known that instability occurs when the ampli- 
fication factor tl, is greater than zero. From the inter- 
facial displacement equation (45), as time goes to 
infinity, the interfacial wave will have infinite value of 
amplification, which is a state describing the collapse 
of the jet. The maximum value of the amplification 
factor CX, of the wave can be obtained by setting 
dcc,*/drc* = 0. Differentiating equations (59) (60) with 
respect to K, setting dcc,*/dx* = 0 and eliminating 

dcr,*/dK* between the resulting equations yields the 
desired dimensionless form as 

[ 
2c(: + {(2cr,*@ + PJ 

( 

((ai*)2+ (c1:)2) “2+2LY, 

(RI*) 2 + (a,*)2 11 
x wdK*)3- xw2- W)‘N 

= (;P2(K*)2+5C(3$) 2d1:+:(P,(K*)’ 

_; ppB(Kug)s/2 > 
l/2 

= 0. (56) 

For the present interest, the low-viscosity liquid 
approximation is applicable. The low-viscosity liquid 
is defined as one for which the following inequality 
holds [15, 161: 

ICC] >> VK’; 111 >> K. (57) 

By solving equations (59) (60) and (62) simul- 
taneously, we can obtain a,*,, af, and K: cor- 
responding to maximum instability of the interfacial 
wave. It is noted that they are functions of two param- 
eters P, and P, only. The resulting dimensionless 
amplification factor cc,*,, dimensionless angular fre- 
quency cc,*, and dimensionless wavelength (~2)~ ’ are 
presented in Figs. 24. In those figures with P, = 0, 

they reduce to the prior solution [13] for the case 
without mass transfer at the gas-liquid interface. 
From Fig. 2 it is interesting to see that a blowing 
(P, > 0), say, by evaporation, at the interface acts to 
enhance the time amplification factor of the dis- 
turbance at maximum instability, while the suction 
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FIG. 2. Dimensionless amplification vs (l/P,) parameter at 
different values of parameter. 

VISCOSITY PARAMETER 

FIG. 3. Dimensionless frequency vs (l/P,) parameter at 
different values of diffusion parameter. 

VISCOSITY PARAMETER 

FIG. 4. Dimensionless wavelength vs (l/P,) parameter at 
different values of diffusion parameter. 

(PI < 0), say, by condensation, acts to reduce the 
instability. Physically, this appears to be reasonable 
since a blowing from the interface to gas stream 
increases the mean axial gas velocity and therefore 
enhances the instability of the interface while the 
reverse is true with a suction at the interface. Also, 
when the surface tension effect increases as compared 
to the viscous effect (namely, the value of Pi’ 

increases), the value of the amplification factor 
decreases whether with or without interfacial mass 
transfer. Intuitively, the result is correct since surface 
tension should provide the stability effect. Similar 

interfacial mass transfer and surface tension effects 
are found on the disturbance frequency as shown in 
Fig. 3. However, the effect on the disturbance wave- 
length is less prevalent (see Fig. 4). 

7. PLUME BREAK-OFF LENGTH OF A 

REACTING SUBMERGED JET 

In the design of SCEP (store chemical energy pro- 
pulsion) for undersea propulsion, a hexafluoride gas 
(oxidant) is discharged at a choked speed into a com- 
bustor filled with liquid lithium (fuel), resulting in a 

complex reacting submerged jet [l, 2, 41. Due to the 
opaqueness of the liquid metal fuel and the metal wall 
of the combustor, the detailed plume structure of the 
jet is difficult to measure. To overcome this difficulty, 
a transparent reacting pair of reactants which have 
similar reacting characteristics have been chosen to 
simulate the liquid metal fuel combustion [8]. They 
injected a sonic hydrochloride gas (oxidant) into an 
aqueous ammonia solution (fuel). In a series of exten- 
sive measurements by varying the ammonia con- 
centration and underexpansion ratio, they discovered 
that, with the presence of ammonia in the solution, the 

reacting jet is much less stable than the one without 
ammonia. In fact the instability caused a break-off of 
the submerged reacting jet shortly leaving the nozzle 
to form a detached plume (bubble) as sketched in Fig. 
1. It is of interest to see if the results of the present 
instability analysis can be successfully applied to pre- 
dict the reported break-off lengths [8]. 

In the submerged reacting plume, the disturbance 
on the gas-liquid interface originates at the orifice and 
its amplitude grows as it propagates downstream. If 
the plume breaks off, it appears reasonable to assume 
that it occurs at the axial location where the dis- 
turbance reaches its maximum instability. Or, at least, 
the break-off length can be assumed to be pro- 
portional to the distance where the maximum insta- 
bility occurs. The maximum instability location, 
which is equivalent to the break-off length here, can 
be expressed in the following functional form [ 141: 

where 

A,=;; 
I(CI~~+&J’,‘21 

m 
w = _.GtiJ-. 

and C,, CL, A and B are empirical constants to be 
determined experimentally. To determine these con- 
stants using the break-off length data of HCl(g)- 
NH,(aq) system [8], a determination of the blowing 
velocity, V,, and P2 parameter is needed to solve for 
the maximum time amplification factor LX,,,,, the 
maximum frequency tlimr and the maximum wave- 
length A,,, from equations (59), (60), and (62). For 
each experimental condition/data, V, is estimated by 
the simplified theory of mass transfer method (the 
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HCQ) -+ 
&O(v) 

FIG. 5. Control volume and various states at phase change 
interface with reaction in gas phase. 

mass-transfer conductance/driving force concept) 
based on the work of Spalding (see, for example, [ 161). 
Briefly, by referring to Fig. 5, the blowing velocity is 
determined from the ammonia gas desorption (evap- 
oration) rate from the aqueous solution. The 
ammonia gas is assumed to react with HCl gas at 
the R-R surface according to the following simple 

stoichiometric reaction: 

1 kg (NH,),(fuel) fr kg of (HCl),(oxidant) -+ 

(1 + r) kg NH,Cl (product). 

The usual assumptions of fast chemistry, equal speci- 
fic heats and Lewis number of unity are made. Also, 
no fuel or oxidant remains at the R-R surface, only 
HCI gas is present at the co-cc plane, and NH, vapor 
and minor trace of water vapor are present at the O- 
0 surface. More details of the estimation procedure 
can be found in ref. [16]. A least-squares fit through 
fourteen plume data [8] with different operating con- 
ditions as utilized to obtain the empirical constants to 
yield the equation 

The prediction of the break-off plume length based 
on the above equation is compared in Fig. 6 with 
all data of more than twenty different experimental 
conditions. The comparison shows that the trend is 
correct. Considering the limitation of the linear sta- 
bility theory, the agreement shown in Fig. 6 is in fact 
reasonable. 

Finally, the result of present analysis shows that 
evaporation enhances the wave instability. It may 
explain the experimental findings [8] that periodic 
plume break-off behavior existed when a HCI gas was 
injected into an ammonia solution and that a much 
more stable plume was found when the HCl gas was 
injected into water without ammonia. This is because 
in the former, ammonia vapor has to evaporate from 
the solution to react while in the latter the HCI gas 
simply dissolved in water like a condensation process. 
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FIG. 6. Break-off point estimation versus experimental data 
of Cho et al. [8]. 

8. CONCLUSIONS 

The effect of mass transfer on the Kelvin- 

Helmholtz instability of the gas-liquid interface of a 

sonic gas jet submerged in a liquid has been analyzed. 
Solutions have been presented for the dimensionless 
amplification factor, angular frequency and wave- 
length corresponding to the maximum instability of 
the interfacial wave. The results show that the inter- 
facial evaporation or exothermic reaction enhances 
the wave instability while the condensation or endo- 
thermic reaction reduces the instability. The results 
also elucidate the periodic break-off phenomena 
observed in reacting submerged jets. Finally, appli- 
cation to the prediction of the break-off length has 
been made and theoretical predictions are found in 
satisfactory agreement to experimental data. 
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